Documentation

Polygone de signal : Différence entre versions

(Ne pas encore calculer (état primitif sur la couche de plan de cuivre))
(Ne pas encore calculer (état primitif sur la couche de plan de cuivre))
Ligne 102 : Ligne 102 :
  
 
=== Ne pas encore calculer (état primitif sur la couche de plan de cuivre) ===
 
=== Ne pas encore calculer (état primitif sur la couche de plan de cuivre) ===
If you select this item, the ground plane at first is built up three-layered:
+
Si vous sélectionnez cet élément, le plan de masse est d'abord constitué de trois couches:
*Its shape on layer "Area", it is the primitive of the ground plane
+
*Sa forme sur la couche "Plan de masse", c'est la primitive du plan de masse.
*The auras of all signals on layer "Deletion", i. e. the spacings of all signals giving clearance to the ground potential (s).
+
*Les auras de tous les signaux de la couche "Isolement", c'est-à-dire l'espacement de tous les signaux donnant un dégagement au(x) potentiel(s) de masse.
*The tracks on layer "Copper". All signal tracks including the ground signal (s) are displayed here.<br><br>
+
*Les pistes de la couche "Cuivre" (= face soudure, face composant ou couche interne: piste). Toutes les pistes de signaux, y compris le (s) signal (signaux) de masse, sont affichées ici.<br><br>
  
'''Example:'''
+
'''Exemple:'''
  
  
[[Image: groundpic_1.jpg|A double sided layout]]<br>Image: A double sided layout<br><br>
+
[[Image: groundpic_1.jpg|Un dessin double face]]<br>Image: Un dessin double face<br><br>
  
  

Version du 9 novembre 2017 à 13:55

Depuis version V19!

Icon
L'icône se trouve parmi les fonctions de dessin.


Généralités

Tous les polygones remplis sur une couche de cuivre peuvent être muni d'un signal. Chaque peut être manipulé comme un plan de masse séparé. Il peut être fourni individuellement avec des attributs. Sur une couche de cuivre, plusieurs polygones avec des signaux différents peuvent être dessinés.


Vous pouvez accéder à ce mode:




Comment faire

Définissez les coins du polygone par M1. Vous pouvez fermer le polygone automatiquement par "Retour" lors du dessin du dernier segment. M2 fait de même que vous finissez la ligne exactement sur le point de départ du polygone. Immédiatement, le dialogue pour l'édition du polygone de signal s'ouvre.

Dialogue pour l'édition du polygone de signal
Le dialogue pour l'édition du polygone de signal

Couche

Un polygone avec assignation de signal ne peut être créé que sur une couche de cuivre. Les couches de cuivre utilisées dans votre projet peuvent être sélectionnées dans la liste déroulante. Sélectionnez la couche de cuivre sur laquelle votre polygone apparaîtra plus tard (face soudure, face composant, couche interne).

Signal

Sélectionnez le signal à attribuer au polygone. À ce stade, vous ne pouvez attribuer qu'un seul signal à un seul polygone. La création d'un Couplage en étoil (GND) est un sujet distinct. S'il vous plaît, regardez là.

Largeur de ligne

En mots faciles, la largeur de la piste est l'épaisseur du stylo que vous utilisez pour remplir le polygone avec couleur. Sonne un peu enfantin, mais en ce qui concerne la technique de production, c'est la meilleure façon de comparer. En Gerber, un stylo photo suit les lignes sur un panneau photosensible avec une ouverture selon la largeur de la piste. Plus la pointe du stylo est nette, plus on peut construire des structures plus filigranées. Discutez de la plus petite valeur avec votre fabricant-PCB. Ici en Europe, la valeur minimale de 0,15 mm est commune.

L'image suivante montre le polygone avec une petite flèche de l'encoche. La raison en est une largeur de piste trop large. Le stylo ne peut pas passer par le point le plus étroit.

Largeur de piste trop large
La largeur de la piste est trop grande pour fermer la zone à cet endroit.

Quant à la largeur de la piste définie ici, le "Vérifier le projet..." vérifie si la largeur minimale de la voie d'une connexion est remplie. La "Largeur de ligne" doit également être considérée en combinaison avec le "Distance de grille". Un plan de masse grisé consiste en une structure de réseau en lignes orthogonales. La largeur de cettes lignes vous définissez ici. Vous ne pouvez entrer qu'une valeur pour la largeur de la piste ici. La structure de réseau (= plan de masse en lignes) a toujours une structure de maillage carré.

Distance de grille

Un plan de terre en lignes offre des avantages de production en galvanisation et est également préférable en ce qui concerne la performance électromégienne du signal. En plus de la largeur de la piste, vous pouvez définir la distance du maillage. REMARQUE: Si l'espacement de la grille devient trop large, le polygone ne pourra plus transmettre le signal.

Plan de masse en lignes
Face composant: Plan de masse en lignes (à droit). Largeur de ligne: 0,3mm, Distance de grille: 0,5mm

La limite est:
Distance de grille > Diamètre de trou de perçage minimale + 2 x Epaisseur de collerette des pastilles

Si vous utilisez la routine "Vérifier le projet" ou si vous "Recalculer le chevelu...", une telle grille polygonale très espacée ne peut pas transmettre le signal qui doit y circuler. Il restera donc un chevelu et les pastilles de soudure en question devront être connectées manuellement par une piste de signal.

Le message suivant pourrait apparaître lors de l'utilisation de la routine "Vérifier le projet":
"Polygone_trop_grossier..."


Polygone de signal: La grille trop grossier
Face soudure: La grille du polygone de signal est trop grossier. Veuillez choisir une grille plus petite.

Distance des bords

Il est utile d'avoir un peu d'espacement entre le plan de masse et le bord de la PCB. Il peut éviter un court-circuit en touchant simplement la carte par n'importe quel autre objet. De même, une diaphonie du signal peut être évitée. L'arête de coupe exact est au milieu du ligne de contour des PCB. Poussez touche [#] pour visualiser l'arête de coupe.


Distance du polygone au bords
Distance des bords: à gauche sans, à droit avec distance au bord. Dans l'image droit le polygone à gauche montre un distance de bord de 0,8mm. Le polygone à droit montre un distance de bord de 0,4mm.


Rang

Des polygones peuvent se chevaucher, ils peuvent entrelacer - mais ils ne doivent pas se toucher. Le rang d'un polygone définit sa domination par rapport aux autres polygones (enlevant une partie de la forme de l'autre). Plus le chiffre du rang est élevé, plus le polygone est dominant. Un polygone de rang 2 domine un polygone ayant seulement rang 1. Cela signifie que l'une de rang 2 enlève le chevauchement de l'une de rang 1 et ainsi de suite. Il y a 99 rangs possibles.

Signalpolygonrang f.jpg
Face soudure: Entrelacement de polygones avec différents signaux et rangs différents

La distance entre les deux plans de masse est déterminée par la valeur de "Écartement des signaux différents", voir l'entrée dans la boîte de dialogue "Vérifier le projet". Moins que l'entrée individuelle "Isolement de piste minimal" du signal (ou de sa classe de signaux) ne soit plus grande. La valeur la plus élevée des deux sera utilisée, ce qui fait une plus grande distance.

Ajuster les auras

Si vous créez un polygone complètement nouveau, les auras des pistes, vias et pads touchés et contenus seront adaptés. Si vous changez les auras manuellement par la suite, ils ne seront pas automatiquement ajustés lorsque vous rechargez le polygone, à moins que vous cochez la case "Ajuster les auras". Voici ce qui va se passer:

Ensuite, vous pouvez changer manuellement les auras des différents pastilles et vias. Alors TARGET ne proposera pas d'ajuster les auras lors du recalcul du polygone. Si vous souhaitez intégrer complètement un pad, vous pouvez remettre son aura à zéro plus tard ou utiliser le champ "Aucun aura sur ces couches:" et lister les couches de cuivre correspondantes la. Ensuite, recalculez le remplissage c'est-à-dire que le dialogue "Créer un polygone de masse" doit être à nouveau ouvert et que l'option "Remplir directement (Executer la computation en couche de cuivre)" doit être cochée. Les vias n'obtenient pas jamais des freins thermiques automatiquement. En général, les vias sont toujours connectées sur toute leur surface (=intégré). Si l'utilisateur ajoute plus tard une aura à la couche via sur le plan de masse, il reste isolée dans ce plan de masse, c'est-à-dire non connectée.

Créer des freins thermiques

La pastille de soudure, ayant le même signal que le polygone de masse, par exemple GND, doit être entièrement encastrée afin d'être connectée au mieux. Cependant, une trop grande quantité de chaleur se dissiperait trop rapidement à la plan de masse pendant le brasage, de sorte que la soudure ne se lierait pas optimalement avec le cuivre. Mieux vaut créer un frein thermique. Un frein thermique est un pastille de brasage entouré d'une distance de sécurité (aura) et connecté au plan de masse seulement par des petites barres. Cela empêche l'énergie thermique de se dissiper trop rapidement dans la plan de masse lors de la soudure. C'est pourquoi nous les appelons "freins thermiques". Ces barres automatiques sont en forme de croix jusqu' à la pastille. Voir aussi Freins thermiques (Thermal Pads). La largeur de ces barres automatiques est déterminé par:


Signalpolygone thermal.jpg
Image: Les pastilles #1 des deux composants sont localisées dans deux polygones de masse. À gauche avec frein thermique, à droit sans - ainsi integré complètement dans la polygone.


Effacer des îlots

Un piece d'un plan de masse pas connecté d'un signal s'appelle un "îlot de masse" ou "orphane". Ils n'ont aucun but et surtout causent des problèmes. Ils devraient donc être supprimés. TARGET le fait automatiquement si vous cochez la case. Un plan de masse sera connecté par un pastille d'un composant etant dans l'interne de la plan de masse ayant aura =0, soit par un via (trou galvanisé) ayant une aura de 0 sur cette couche ou par une piste parcourant le plan de polygone et ayant une aura = 0. Toujours le signal (= le nom du signal) doit être identique.

Calculer le remplissage

Remplir ici veut dire quelque chose comme "verser du cuivre". C'est lorsque vous fusionnez les structures de la voie de signalisation et la surface du sol sur la couche de cuivre. TARGET rend alors la structure complète de "Face composant" ou "Face soudure" (ou "Couche interne: Piste" si vous avez) en incluant le plan de masse. Vous pouvez le faire instantanément ("Remplir directement") en confirmant le dialogue ou vous pouvez laisser la construction dans un état intermédiaire ("Ne pas encore calculer") pour que le polygone de signal du plan de masse soit défini comme primitif. Il est maintenu en position d'attente pour être manipulé séparément sur la couche "Plan de cuivre". Le plan de masse peut donc encore être adapté, déplacé et tracé à votre guise.


Remplir directement (exécuter la computation en couche de cuivre)

Le polygone est immédiatement créé avec toutes les interactions avec tous les autres éléments sur la couche de cuivre. Il est affiché de la façon dont il sera fabriqué à la fin. Tout changement de conception nécessite un calcul complet (rendu). Ce processus peut prendre quelques secondes dans le cas de projets plus importants. Il serait donc préférable d'utiliser l'option:"Ne pas encore calculer (état primitif sur la couche de surface)" voir ci-dessous.

Un PCB double face
Image: Exemple d'une disposition double face, plan de masse sur le dessus en cuivre, rempli directement.

Ne pas encore calculer (état primitif sur la couche de plan de cuivre)

Si vous sélectionnez cet élément, le plan de masse est d'abord constitué de trois couches:

Exemple:


Un dessin double face
Image: Un dessin double face


Primitive of the ground plane
Image: The ground plane as a priitive created by keyboard key [6] Draw signal polygon. It is displayed on layer "14, Area top".


The auras
Image: The aura of each of the signals is displayed on layer "15, Deletion top".


The tracks
Image: DThe copper tracks on layer "16, Copper top"


A double sided layout
Image: All three layers Copper, Deletion and Area are faded in, in addition layer "23, PCB Outline" (light red). The state still is "Not yet computed", because the three layers are still separate which means not yet "poured into copper". Ticking the boxes to the right each fades them in, unticking fades them out.

Masquer le remplissage, afficher le contour seulement

Une question: "Les ligaments dans les tampons thermiques terminent parfois à des espaces vides. Pourquoi?"
Un plan de masse de polygone peut avoir deux états: remplis et non remplis. En autres mots: converti et non converti. TARGET remplit les polygones non instantanément car le processus peut prendre quelques secondes. Si les polygones de masse seraient convertis à chaque modification mineur, le flux de travail serait obstrué inutilement.

Si le plan de masse n'est pas encore rempli, les ligaments dans les freins thermiques peuvent pointer vers l'espace vide dans ce stade précoce. Si vous remplissez plus tard l'avion, c'est-à-dire le convertir, ces ligaments disparaissent.

Avant de vérifier le projet et avant la production, tous les groupes de polygones sont toujours convertis.



Ligaments
(Image 1: La zone n'est pas remplie. Deux ligaments sont redondants, les coins ont des pointes pointues, des îlots orphaniques existent encore)




Les ligaments erronés ont été supprimés.
(Image 2: le plan est rempli. Les ligaments redondants dans les freins thermiques sont supprimés, les îlots de signal orphelins sont effacés, les extrémités des coins sont arrondies selon la "Largeur de ligne")




Le dialogue pour polygone de masse
(Image 3: La "Largeur de ligne" définit l'épaisseur du stylet qui sera utilisée pour remplir les polygones. "Remplir directement" prend soin de la bonne conversion)

Récupérer un plan de masse non rendu

You retrieve an already computed filled ground plane (i. e. separate it again to the three planes copper, deletion and area) by selecting the entry "Un-fill all polygons" in the menu Actions at Ground planes. Now you can again show and hide the ground plane separately.

Retrieve ground plane
Image: Retrieve ground plane to a triple of layers